

Sahib Singh Dhanjal

Email: dhanjalsahib@gmail.com | Phone: +1 (650) 495 9896 | Portfolio: <https://sahibdhanjal.github.io/>

Education

University of Michigan, Ann Arbor Masters of Science in Robotics GPA - 3.55/4.00 Courses: Artificial Intelligence, Machine Learning, SLAM, Self Driving Cars, Computer Vision	Aug '17 - May '19
Birla Institute of Technology and Science, Pilani Bachelors of Engineering in Mechanical Engineering GPA - 9.05/10.00 Courses: Image Processing, Mechanisms in Robotics	Aug '12 - May '16

Publications

- [i] DeepLocNet: Deep Observation Classification and Ranging Bias Regression for Radio Positioning Systems: IROS' 19
- [ii] Unsupervised Learning of Assistive Camera Views in Augmented Reality Multitasking Environments: ICRA' 19
- [iii] PoseNet++: A CNN framework for online pose regression and robot re-localization

Work Experience

Magic Leap Google XR: Sr High Performance Software Engineer (Computer Vision)	Oct '20 – Present
• Engineered a robust, real-time, photometric refinement algorithm for targetless depth-to-camera extrinsics calibration , compensating for upto 0.5° and 1.75mm of deformation due to manufacturing defects that was previously causing world reconstruction failure. The solution was shipped as an OTA update, enhancing device reliability and avoiding a recall of 1500+ devices.	
• Led development of a high-precision marker tracking algorithm (1mm error over 50m) for safety-critical surgical applications using photometric refinement. Achieved substantial accuracy improvements over OpenCV only benchmarks (40mm vs 5mm and 12arcmin vs 4arcmin) across 500+ synthetic and real world datasets.	
• Developed an online camera intrinsics calibration algorithm , enabling reliable device operation from -5°C to 80°C by dynamically compensating for temperature induced focal length changes.	
• Optimized the factory calibration pipeline, reducing both triangulation scale error and epipolar error by ~2% through the unification of lens correction and spherical rectification. Other efficiency improvements reduced device calibration time by 50% (~28min vs ~58min), effectively doubling production throughput.	
• Developed a unified metrics API , device telemetry API and web dashboard to facilitate data-driven decision-making, benchmarking, and real-time performance monitoring of vision systems. Established a complimentary CI-based automated testing framework (on-device, cloud integration, unit testing) to significantly improve code quality and reliability.	
• Developed an extrinsics miscalibration detector for the pose tracking pipeline. The solution proactively detects miscalibrations to trigger online calibration (OC), reducing computational overhead by ~30% per 10 min of device runtime.	
• Improved markerless extrinsics camera calibration precision by ~14% using a principled covariance estimation method.	
• Keywords – non-linear optimization, online calibration, 3D computational geometry, linear algebra, deep learning, sensor fusion, SLAM, photometric refinement, pose tracking, marker tracking, PyTorch, Python/C++	
Magna Lyft Level 5: Software Engineer (Deep Learning, Localization and Mapping)	Jul '19 - Oct '20
• Led development of a deep-learning based solution for dirty lens/pedestrian detection on highly constrained ARM DSPs (< 2Mb) achieving ~15FPS. Designed, pruned and quantized the neural network, reducing model size by ~70% with a minimal drop in model accuracy/mAP. Deployed it on CEVA DSPs using ONNX Runtime, ArmNN, and CEVA DNN compiler.	
• Developed monocular visual SLAM based auto-pilot/auto parking systems for Tier I/II OEMs achieving 30cm/50m accuracy.	
• Implemented a 2.5D lane geometry generation algorithm to create semantic map from OSM (Open Street Map)	
• Streamlined HD map validation pipelines, reducing runtime from 24 hrs to < 3 hrs using Flyte, Docker, Botocore and gRPC.	
• Keywords – deep learning, pruning, quantization, object detection, sensor fusion, Visual SLAM, ONNX, OSM, Python/C++, gRPC	

Research Experience

Perpetual Robotics Lab: Radio-Visual-Inertial Positioning System, IROS 19	Aug '18 – May '19
• Developed a robust radio-visual-inertial localization framework using a deep learning classifier to distinguish LOS/NLOS radio packets to validate Friis Free Space Model (95% accuracy) for indoor navigation, and published the same in IROS' 19. Conducted simulations in MATLAB/Python and performed real-world experiments on the Fetch Mobile Manipulator to validate the framework.	
• Keywords – deep learning, radio localization, Fast SLAM, particle filter, non-linear optimization, ROS, Python/C++, Matlab	
Distributed Aerospace Systems and Controls Lab: NASA Astronet, ICRA '19, TARDEC Project	Apr '18 - May '19
• Developed multi-robot control and localization algorithms using ROS/Gazebo to control swarms of land and aerial robots. Published unsupervised learning approach for augmented vision based robot control for NASA's Astronet Project (ICRA' 19).	
• Keywords – unsupervised learning, swarm localization, AR/VR applications, ROS, rViz, Gazebo Python/C++	